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Mathematical optimization

e problems of the form
minimize  f(x)
subjectto z € S

e convex optimization: minimizing a convex function over a convex set
— tractable to solve (even with nondifferentiable objective)
— powerful both for theory and practice
e combinatorial optimization
— when S is discrete, e.g., z € {0,1}"
— when difficult, often solved via convex relaxations
® nonconvex optimization

— can only find local optima
— choice of algorithm is much more important
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Affine set

line through x1, x5: all points

r=0x1+ (1 —0)xs (0 € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x; and x5: all points
r=0x1+ (1 —0)x
with 0 < 0 <1
convex set: contains line segment between any two points in the set
r,10€C, 0<0<1 = HOxr1+(1—-0)xxeC’

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of z1,. .., xx: any point x of the form
562(911’1—|—(925132—|—“'—|—(9k£€k

with 0 4+---+0,=1,0; >0

can view this probabilistically as a mixture or expectation

convex hull conv S: set of all convex combinations of points in S
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Hyperplanes and halfspaces

hyperplane: set of the form {z | alx = b} (a # 0)

Lo

a

T
™ a x> b
alez <b

e a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center z. and radius 7:

B(we,r) = {2 | |z = zclla <7} = {ze +ru [ lulla <1}

ellipsoid: set of the form
{z|(z—2)" PNz —=) <1}

with P € S, (i.e., P symmetric positive definite)

with A square and nonsingular
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Polyhedra and polytopes

solution set of finitely many linear inequalities and equalities
Ax < b, Cr=d

(A e R™", C e RP*" =< is componentwise inequality)

ai ao

as

\0,3

a4

polyhedron is intersection of finite number of halfspaces and hyperplanes

bounded polyhedron is called a polytope; can also be expressed as the
convex hull of its vertices (Minkowski-Weyl theorem)
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Operations that preserve convexity

practical methods for establishing convexity of a set

1. apply definition

r,10€C;, 0<0<1 = Ox1+(1—-0)xeC’

2. show that C' is obtained from simple convex sets (hyperplanes,

halfspaces, norm balls, . . . ) by operations that preserve convexity

® Intersection
e many others
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Supporting hyperplane theorem

supporting hyperplane to set C' at boundary point x:
{z|alz =a" 20}

where a # 0 and al'z < alzg forall x € C

supporting hyperplane theorem: if C' is convex, then there exists a
supporting hyperplane at every boundary point of C

Convex Optimization
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Convex functions

f:R"™ — R is convex if dom f is a convex set and

flz+ (1—0)y) <O0f(z)+(1-0)f(y)

forall z,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

flOz +(1=0)y) <O0f(x)+(1-0)f(y)

forxz,ycdomf, x#y, 0<6<1
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Examples on R

convex:

e affine: ax +bon R, forany a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: x*on R, for0 < a <1

e logarithm: logx on R,

Convex Optimization
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Extended-value extension

extended-value extension f of f is

~

f(zx)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fllz+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {c0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,
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First-order condition

f is differentiable if dom f is open and the gradient

_(01@) 0f(x) S
Vi) = ( Or,  Oxo Oz, )

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > fx)+Vflx)'(y—z) forall z,y € dom f

f(y)
fl@)+ V) (y — =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2f(z) € S”,

_ 9P f(x)

2 L=
v f(x)w &zziﬁazj’

1,7=1,...,n,

exists at each x € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

quadratic function: f(z) = (1/2)2? Pz + q'x +r (with P € S™)
Vf(x)=Pz+q,  Vf(x)=P

convex if P =0

least-squares objective: f(z) = ||Az — b3
Vf(x) =24A"(Az —b), V*f(zx)=24"4

convex (for any A)
log-sum-exp: f(z) =1log> ,_, expxy is convex

can generalize to log [ exp

Convex Optimization
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Relationship of convex sets and functions

epigraph of f : R" — R:

epif = {(z,t) e R"""' |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set

Convex Optimization
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Jensen’s inequality

basic inequality: if f is convex, then for 0 < 6 <1,

flz+(1—0)y) <O0f(z)+(1-0)f(y)

extension: if f is convex, then

f(Ez) < E f(z)

for any random variable z
useful source of lower bounds

basic inequality is special case with discrete distribution

prob(z =x) =0, prob(z=y)=1-140

Convex Optimization
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Verifying convexity

practical methods for establishing convexity of a function

1. verify definition
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

e nonnegative weighted sum

e composition with affine function

e pointwise maximum and supremum
e composition

Convex Optimization
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Operations that preserve convexity

nonnegative multiple: af is convex if f is convex, a > 0

sum: f1 + fo convex if fi, fo convex (extends to infinite sums, integrals)
composition with affine function: f(Ax + b) is convex if f is convex

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fm(x)} is convex

if f(x,y) is convex in (x,y) and C'is a convex set, then

g(z) = inf f(z,y)

yeC

IS convex

e.g., distance to a set: dist(z,S) = inf,cgs || —y|| is convex if S is convex
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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e © € R" is the optimization variable
e fo:R" — R is the objective or cost function
e /;:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions
optimal value:
p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i1 =1,...,p}

e p* = ¢ if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below

Convex Optimization
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Optimal and locally optimal points

x is feasible if r € dom f; and it satisfies the constraints
a feasible x is optimal if fy(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....m, hi(z)=0, i=1,...

lz =zl < R

Convex Optimization
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

is an unconstrained problem with implicit constraints a!z < b;
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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to fz(ilﬁ) i=1,...,m
aaz—bz, 1=1,...,p

fo, f1, - .., fm are convex; equality constraints are affine

often written as

minimize  fy(x)
subject to fz( )<0, 1=1,...,m
Ax =0

feasible set of a convex optimization problem is convex

any locally optimal point of a convex problem is (globally) optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and
Vfolx)!'(y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z

unconstrained problem: z is optimal if and only if

xr € dom fo, Vfo(x)=0

Convex Optimization
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily

obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,...,m

is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,...

Convex Optimization
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e minimizing over some variables

minimize  fo(z1, 72)
subject to  fi(x1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to  fi(x1) <0, i=1,...,m

where fo(z1) = inf,, fo(z1, z2)
e consensus
minimize  fi(z) + f2(2) + - + fu(z)
Is equivalent to

minimize f1($1> + fQ(CCQ) + -+ fk(azk)
subjectto x;,=x, 1=1,...,k

Convex Optimization
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Examples of convex optimization problems

e maximum entropy
e maximum likelihood estimation in exponential families

e projection onto a convex set

— Euclidean projection (measure distance to set in £ norm)
— Bregman projection (measure via Bregman divergence)

e.g., minimum KL divergence to a convex set of distributions

Convex Optimization
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Linear program (LP)

minimize ¢z 4+d
subject to Gax <X h
Ax =D
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Convex Optimization
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢lz +r
subject to Gz X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex Optimization
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Euclidean projection

[Io(xp): the point in C closest to point xg

can be computed in closed form for many useful examples

o affine set

e nonnegative orthant
e halfspace

e box

RNn

e consensus set C' = {x € |21 =22 ="+ =2zpN}
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Lagrangian
standard form problem (not necessarily convex)

minimize  fo(x)
subject to  f;(z) <

variable z € R", domain D, optimal value p*

Lagrangian: L : R” x R™ x R”P - R, with dom L =D x R™ x R?,

Lz, \,v) —|—Z)\ fi(x -|—sz'hi($)
i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(z) = 0

Convex Optimization
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Lagrange dual function
Lagrange dual function: ¢ : R™ x R? — R,

g(A\,v) = inf L(z,\,v)

xeD
= inf ( folm) + > Nifi(z) + > z/ihi(a:)>
1=1 1=1

g is concave, can be —oo for some A, v

*

lower bound property: if A > 0, then g(\,v) <p

Convex Optimization
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Least-norm solution of linear equations

minimize zlx

subject to Ax =1b
dual function
e Lagrangianis L(z,v) = 212z + v1(Az — b)

e to minimize L over x, set gradient equal to zero:

Vol(z,v) =22+ A'v=0 — z=

e plug in in L to obtain g:
1

—(1/2)A"y

g(v) = L((-1/2)ATv,v) = —ZI/TAATV — bl

a concave function of v

lower bound property: p* > —(1/4)vT AATY — blv for all v

Convex Optimization
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The dual problem

Lagrange dual problem

maximize g(\,v)
subjectto A >0

e finds best lower bound on p*, obtained from Lagrange dual function
e a convex optimization problem; optimal value denoted d*
e )\, v are dual feasible if A = 0, (\,7) € domg

e often simplified by making implicit constraint (A, ) € dom g explicit

Convex Optimization
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Weak and strong duality

weak duality: d* < p*

e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

strong duality: d* = p*

e does not hold in general
e (usually) holds for convex problems
e Slater’s constraint qualification

— strong duality holds for a convex problem if it's strictly feasible
— guarantees that the dual optimum is attained (if p* > —o0)

Convex Optimization
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal feasible: f;(z) <0,¢1=1,...,m, hi(x) =0,1=1,...,p

dual feasible: A > 0

complementary slackness: \;fi(x) =0,i=1,...,m

=~ W b =

. gradient of Lagrangian with respect to x vanishes:

V folx +§:AVﬂ +§:th = (
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KKT conditions for convex problem

~

if x, A\, U satisfy KKT for a convex problem, then they are optimal
if Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(x) = 0 for unconstrained problem
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints

— consensus
e make explicit constraints implicit or vice-versa

e transform objective or constraint functions
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Unconstrained minimization

minimize f(x)

e f convex, continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z*) € dom f, k = 0,1,... with

F(z®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vi(z*) =0
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Gradient descent method

e F Y = (k) ()7 £(2(F)) " where t is the step size

given a starting point x € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAwx.

until stopping criterion is satisfied.

e a descent method (objective decreases each iteration)
e very simple, but often very slow; rarely used in practice

e in the constrained case, can use ‘projected gradient’, which wraps the
righthand side with Euclidean projection onto feasible set

Convex Optimization
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Optimization algorithms

e many algorithms available for different classes of problems
e reformulating the problem may make different algorithms applicable

e important to distinguish between the problem formulation and the
algorithm used to solve it

e specialized vs general-purpose algorithms
— belief propagation (inference in graphical models)
— expectation-maximization (MLE with latent variables)

e can decide whether to solve the problem directly or via the dual

— can make available additional problem structure
— but the dual function is generally nonsmooth
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Variational methods

e the term variational refers generically to optimization-based methods
for doing something

— historically, comes from ‘calculus of variations’
— ‘variational inference’ refers to optimization-based methods to carry
out inference in graphical models

e a variational characterization of an object is one that expresses the
object as the solution to an optimization problem
often based on this principle: a closed convex function is the pointwise
supremum of all its affine underestimators

e related but different task: given an algorithm, figure out what
optimization problem it is implicitly solving (if any)

— can give a deeper understanding of the algorithm
— e.g., loopy BP, EM, boosting
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Variational methods

once a variational representation of an object is available

e design/apply different algorithms to compute the object

e approximate the object by relaxing the optimization problem (simplify
objective/constraints)

e get bounds on the object (e.g., via duality)

— Jensen’s inequality
— Fenchel’s inequality

Convex Optimization
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