Machine Learning for Finance

Neal Parikh

Cornell University

Spring 2018

Optimization algorithms

Optimization algorithms

many algorithms available for different classes of problems
distinguish between problem formulation and optimization algorithm
reformulating the problem may make different algorithms applicable
specialized vs general-purpose algorithms

we will only do a high-level survey for flavor, omitting many details

Outline

Numerical linear algebra

Matrix structure and algorithm complexity

cost (execution time) of solving Az = b with A € R™*"

e for general methods, grows as n®

e less if A is structured (banded, sparse, Toeplitz, . ..)

flop counts
e flop (floating-point operation): one addition, subtraction,
multiplication, or division of two floating-point numbers

e to estimate complexity of an algorithm: express number of flops as a
(polynomial) function of the problem dimensions, and simplify by
keeping only the leading terms

e not an accurate predictor of computation time on modern computers

o useful as a rough estimate of complexity

Matrix structure and algorithm complexity

vector-vector operations (z, y € R")
e inner product zy: 2n — 1 flops (or 2n if n is large)
e sum x + y, scalar multiplication ax: n flops

matrix-vector product y = Ax with A € R™*"

e m(2n — 1) flops (or 2mn if n large)

e 2N if A is sparse with N nonzero elements

e 2p(n+m) if Ais givenas A=UVT, U € R"*P, V € R"*P
matrix-matrix product C = AB with A € R™*", B € R"*?

e mp(2n — 1) flops (or 2mnp if n large)

o less if A and/or B are sparse

e (1/2)m(m+1)(2n — 1) ~ m?n if m = p and C symmetric

Linear equations that are easy to solve

diagonal matrices (a;; =0 if i # j): n flops

r=A"1b= (bl/alla .- -abn/ann)

lower triangular (a;; = 0 if j > i): n? flops

T = bl/all

xzy = (by—anix1)/a

xg = (b3 —azix; — azer2)/asz

Tn = (bn — Ap1T1 — Ap2T2 — - — an,nflxnfl)/ann

called forward substitution

upper triangular (a;; =0 if j < i): n? flops via backward substitution

Linear equations that are easy to solve

orthogonal matrices: A~! = AT
e 2n? flops to compute z = ATh for general A
e less with structure, e.g., if A =1 — 2uu® with ||uls = 1, we can
compute z = ATb = b — 2(uTb)u in 4n flops

permutation matrices:

0 — { 1 j=m
I 0 otherwise
where m = (71,72, ..., 7,) is a permutation of (1,2,...,n)
e interpretation: Az = (Zr,,...,%x,)
e satisfies A=! = AT, hence cost of solving Az = b is 0 flops
example:

0 1 0 0 0 1
A=1[10 0 1|, At=4aT=11 0 0
1 00 0 1 0

The factor-solve method for solving Az =0

e factor A as a product of simple matrices (usually 2 or 3):
A=A1Ay--- Ay

(A; diagonal, upper or lower triangular, etc)

e compute z = A~ 'h = A,;l e A2_1A1_1b by solving k ‘easy’
equations

Al.’L'l = b, Agxz =T, ey Akx = Tk-1
cost of factorization step usually dominates cost of solve step
equations with multiple righthand sides

Az = by, Axg = bo, ceey Az, = by,

cost: one factorization plus m solves

LU factorization

every nonsingular matrix A can be factored as
A=PLU

with P a permutation matrix, L lower triangular, U upper triangular
cost: (2/3)n? flops

Solving linear equations by LU factorization.
given a set of linear equations Az = b, with A nonsingular.
1. LU factorization. Factor A as A = PLU ((2/3)n? flops).
2. Permutation. Solve Pz; = b (0 flops).
3. Forward substitution. Solve Lz = z (n? flops).
4. Backward substitution. Solve Uz = 23 (n? flops).

cost: (2/3)n® + 2n? ~ (2/3)n3 for large n

Cholesky factorization

every positive definite A can be factored as
A=LL"

with L lower triangular
cost: (1/3)n? flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Az = b, with A € S}, .

1. Cholesky factorization. Factor A as A = LL™ ((1/3)n® flops).

2. Forward substitution. Solve Lz; = b (n® flops).
3. Backward substitution. Solve LTz = 21 (n? flops).

cost: (1/3)n® + 2n? ~ (1/3)n3 for large n

10

LDLT factorization

every nonsingular symmetric matrix A can be factored as
A=PpPLDL"PT

with P a permutation matrix, L lower triangular, D block diagonal with
1 x 1 or 2 x 2 diagonal blocks

cost: (1/3)n?
e cost of solving symmetric sets of linear equations by LDLT

factorization: (1/3)n® + 2n? ~ (1/3)n? for large n
e for sparse A, can choose P to yield sparse L; cost < (1/3)n3

11

Equations with structured sub-blocks

= 0

e variables z; € R™!, 25 € R™; blocks A;; € R™"*"™
e if Ay; is nonsingular, can eliminate z1: 1 = A (b — Aj222);
to compute x5, solve

(Agg — Ag AT Aro)w = by — Ay APy

Solving linear equations by block elimination.
given a nonsingular set of linear equations (1), with Ai1 nonsingular.
1. Form A ' Ai2 and Apj'bs.
2. Form S = Agy — A21 A7 Ao and b = by — A2y A7'by.
3. Determine x5 by solving Sza = b.
4. Determine x1 by solving A1121 = b1 — Ajaxs.

12

Structured matrix plus low rank term

(A+BC)z =b

e AcR"™", BeR"7P CeR"
e assume A has structure (Az = b easy to solve)

(& 213

now apply block elimination: solve

(I+CA™'B)yy=CA b,

first write as

then solve Ax = b— By

this proves the matrix inversion lemma: if A and A + BC nonsingular,

(A+BC) ' =A'—A"'BI+CA'B)"tlcA™!

13

Structured matrix plus low rank term

example: A diagonal, B, C' dense
e method 1: form D = A + BC, then solve Dx = b

cost: (2/3)n? + 2pn?
e method 2 (via matrix inversion lemma): solve
(I+CA™'B)yy=CA", (2)
then compute z = A~ 'b— A~ By

total cost is dominated by (2): 2p*n + (2/3)p? (i.e., linear in n)

14

Numerical linear algebra software

most memory usage and computation time in optimization methods
is spent on numerical linear algebra

don't implement your own linear algebra
BLAS

ATLAS and optimized BLAS

LAPACK

vectorization

15

Basic methods

Outline

16

Unconstrained minimization

minimize f(z)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(z) is attained (and finite)
unconstrained minimization methods
e produce sequence of points z(*¥) € dom f, k =0, 1,... with
fa®) — p*
e can interpret as iterative methods for solving optimality condition
Vix*)=0

17

Descent methods

2D — o) LW AZE) ith f(atHD) < f(2®)

other notations: 7 =z + tAx, z := = + tAx
Ax is the step, or search direction; t is the step size, or step length
(step size also called learning rate in machine learning)

from convexity, f(x) < f(x) implies Vf(2)T Az <0
(i.e., Az is a descent direction)

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. z := = + tAz.

until stopping criterion is satisfied.

18

Line search types

exact line search: ¢ = argmin, f(z + tAx)
backtracking line search (with parameters a € (0,1/2), 8 € (0,1))
e starting at ¢t = 1, repeat t := [t until
f(x+tAz) < f(z) + atVf(z)' Az

e graphical interpretation: backtrack until ¢t < ¢y

Gradient descent method

general descent method with Az = =V f(z)

given a starting point z € dom f.
repeat
1. Az = =V f(z).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. = := = + tAuw.
until stopping criterion is satisfied.

e stopping criterion usually of the form ||V f(z)|l2 <€

e very simple, but can be very slow

20

Gradient descent example

f(x:l’x?) — e$1+3$2_0.1 + e$1—3x2_0A1 + 6_-761—041

exact line search

backtracking line search

21

Gradient descent example in R'®

500

flx)=c"e - Z log(b; — al'x)
i=1

104
102
N
=
|
—~~ 0 AN
= 10 ~.exact |.s.
3 S
S
1072
backtracking I.s.
— 4l . . DT
10 0 50 120 150 200

‘linear’ convergence, i.e., a straight line on a semilog plot

22

Newton step

Azy = =V f(2) 'V f(x)

e = + Ax, minimizes second order approximation

Fla+0) = f(@) + Vi@ o+ 3079 o)

e = + Axy,y solves linearized optimality condition
Vi(z+v) = Vi(@+v)=Vf@)+ Vf(z)v=0
S £/

gj—|—A;[th,f/(.T+A$nt))
(@, f'(2))

(z, f(z))

(-T + AInty f({l' + Awnt))
23

Newton decrement

Az) = (V) V2 f(2) "'V ()"

a measure of the proximity of x to z*
e gives an estimate of f(x) — p*, using quadratic approximation f
. ry 1 2
f(x) —inf f(y) = SA(2)
y 2
e equal to the norm of the Newton step in the quadratic Hessian norm

Az) = (A2T, V2 f(2) Ay

o directional derivative in Newton direction: V f(z)T Azp, = —\(x)?

o affine invariant (unlike ||V f(x)]2)

24

Newton’s method

given a starting point z € dom f, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement.
Azy = —V2f(x)7'Vi(z); N :=Vf)'Vif(z) ' V().
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAmys.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(Ty) with starting point 3(© = 7-12(0) are

Y8 = p158)

25

Examples

example in R?

10°

e converges in only 5 steps

e quadratic local convergence

26

example in

RlOO

Examples

10°

100

(@) —p*

s 10710,

1075 ¢

10—15

exact line search

backtrackin

—_
ot

(k)

step size ¢

e
)

—

exact line search

a—déktracking

Prul=N

27

Examples

RlOOOO (

example in with sparse a;)

10000 100000

fla) == log1—a?)— > log(bi —al'z)
i=1 i=1

10°

100

f@®) —p*

105

28

Outline

Optimization in machine learning

29

Optimization in machine learning

usually interested in ‘composite objective’ problems of the form
minimize g(z) + h(z)
with

g(x) = Zgi(x% W)= hulxr)

k=1
try to exploit this (and additional) structure, taking account of
— some or all of N, n, K may be (very) big
— assumptions on g, h (convex? smooth?)

— properties of problem data (storage/access? streaming/changing?)

— generally don't care about very high accuracy solutions (why?)

will give a few representative examples (without detailed discussion
of convergence or behavior); these methods have many variations

30

Coordinate descent

e coordinate descent method for minimizing f

E+1 . k K k
xy = argmin f(z1,25,25,...,2,)
1
k+1 . k+1 k k
zs5 = argmin f(zi", 22, 25,...,2,)
T2
k+1 . k41 k41, k41
x, argmin f(x{" x5, x5, ..., Tn)

Tn

e often take z; to be blocks (block coordinate descent)

e for two blocks, called alternating minimization

31

Stochastic gradient descent

e batch gradient descent for additive objective is
N
2" =gk —aVf(aF) = 2% —aV Z fi(z)
i=1

e stochastic gradient descent (also called incremental or online)
2* = gF oV () = 2" — aVfi(x)
where i iterates over [N]
— batch: use all N examples each iteration

— stochastic: use 1 example each iteration
— mini-batch: use b examples each iteration

e natural choice for streaming data

32

Proximal gradient method

e given problem of minimizing g + h, proximal gradient method is

k+1

2F 1= prox i, (27 — o*Vg(2"))

where
. 1
proxs(v) = arguin (a) + 5~ vl
is called the proximal operator of f with parameter A > 0

e here, g is convex and smooth and A is convex

e proximal operators seem complex, but can be evaluated very
efficiently for many functions that come up in machine learning and
statistics problems, especially nonsmooth ones

33

Soft thresholding

proxy ., (v) = (v = Ay — (-v = A); =

Ui—/\ UiZ/\
0 |U1‘S>\
’Ul+)\ vi§—>\

34

Accelerated proximal gradient method

idea: use information from previous time steps

yk+1 = :L'k +wk(l’k o xk—l)

T = prox ., (" — oFVg(yFT))

where w* € [0,1) is an extrapolation parameter that must be chosen
appropriately to achieve the acceleration, e.g., w* = k/(k + 3)

stated here for composite case, but acceleration often used in
‘regular’ gradient descent method

note: accelerated methods are generally not descent methods

35

f(k)—fstar

1e-03 1e-02 1e-01 1e+00

1e-04

Sparse logistic regression

— ISTA
— FISTA

400

T
600

T T
800 1000

36

